Logo Normandie Logo Europe Logo de La Manche

Minute-scale detection and probabilistic prediction of offshore wind turbine power ramps using dual-Doppler radar

Résumé : Predicting the occurrence of strong and sudden variations in wind power, so-called ramp events, has become one of the main challenges for the operation of power systems with large shares of wind power. In this paper, we investigate 14 ramp events of different magnitudes and minute-scale durations observed by a dual-Doppler radar system at the Westermost Rough offshore wind farm. The identified ramps are characterised using radar observations, turbine data and data from the Weather Research and Forecasting (WRF) model. A remote sensing-based forecasting methodology that propagates wind speeds upstream of wake-free turbines is extended here to the whole farm, by including corrections for wake effects. The methodology aims to probabilistically forecast the wind turbines' power in the form of density forecasts. The ability to predict ramp events of different magnitudes is evaluated and compared with probabilistic statistical and physical benchmarks. During the observed ramp events, the remote sensing-based forecasting model strongly outperforms the benchmarks. We show here that remote sensing observations such as radar data can significantly enhance very short-term forecasts of wind power.
Domaine de référence : EMR
Auteur Valldecabres Laura, Bremen Lueder von, Kühn Martin
Année de parution : 2020.
Mots-clés : density forecast, remote sensing, transient ramp, very short-term forecast, weather front.
Type de document : Article de revue.
Exporter la référence : BibTeX | Zotero RDF | RIS (EndNote)

Ce projet est financé par le Fonds Européen de Développement Régional, la Région Normandie et le Conseil Départemental de la Manche.