Warning: include_once(/home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/prive/formulaires/selecteur/generique_fonctions.php): failed to open stream: No such file or directory in /home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/ecrire/inc/utils.php on line 1530

Warning: include_once(): Failed opening '/home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/prive/formulaires/selecteur/generique_fonctions.php' for inclusion (include_path='.:/opt/php7.1/lib/php') in /home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/ecrire/inc/utils.php on line 1530
A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction | [ CorroVision ]
Logo Normandie Logo Europe Logo de La Manche

A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction

Résumé : Nowadays, superhydrophobic surfaces have attracted a lot of interest because of the wide range of applications in industries. These surfaces can significantly reduce the drag force due to the formation of air gaps between the substrate and liquid interface. The present review mainly focuses on the very recent progresses in the drag reduction studies using superhydrophobic surfaces. Also, a brief discussion about the mathematical modeling and the theories of superhydrophobic surfaces, natural water repellent surfaces, various fabrication techniques with advantages and disadvantages of each method and different properties of the fabricated surfaces in industrial applications is presented. Finally, the limitations of using such surfaces in industrial applications, which deals with harsh and destructive environment conditions, are addressed and further research topics and future outlooks to improve the durability of the superhydrophobic surfaces are discussed.
Domaine de référence : Antifouling
Auteur Liravi Mohammad, Pakzad Hossein, Moosavi Ali, Nouri-Borujerdi Ali
Année de parution : 2020.
Mots-clés : Coatings, Contact angle, Drag reduction, Lotus effect, Superhydrophobic surface.
Type de document : Article de revue.
Exporter la référence : BibTeX | Zotero RDF | RIS (EndNote)

Ce projet est financé par le Fonds Européen de Développement Régional, la Région Normandie et le Conseil Départemental de la Manche.