Warning: include_once(/home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/prive/formulaires/selecteur/generique_fonctions.php): failed to open stream: No such file or directory in /home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/ecrire/inc/utils.php on line 1530

Warning: include_once(): Failed opening '/home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/prive/formulaires/selecteur/generique_fonctions.php' for inclusion (include_path='.:/opt/php7.1/lib/php') in /home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/ecrire/inc/utils.php on line 1530
TY - JOUR TI - ESwift: Smart and Self-Stabilizing Water-Wind Floating Turbine AU - Doan, Minh N. AU - Badri, Mehdi AU - Tran, Trung B. AU - Kai, Yuriko AB - In April 2019, a team of Keio University and Bucknell University students was assembled to participate in Ericsson Innovation Awards with a novel concept for generating renewable energy. This conceptual system consists of a vertical axis wind turbine, a crossflow marine hydrokinetic turbine, a floating platform integrated with a quadcopter system, and three to four temporary mooring lines with ship-type anchors. The proposed designed aims to offer solutions to two current problems of floating offshore wind energy: high construction cost of floating platforms and difficulties in maintenance of mooring lines. The combination of two vertical-axis turbines into a single floating platform would enable the system, namely ESwift, to extract energy from both wind and current resources. Additionally, due to the utilization of vertical axis turbines, the center of gravity of the proposed concept is significantly lower with respect to water level, compared to that of existing floating horizontal axis wind turbines, which would potentially reduce the floater's size and construction cost. Lastly, the integrated quadcopter mechanism would assist the floater in terms of stability and mobility, and enables an array of ESwifts to automatically rearrange for maximal energy generation. The authors hope that readers would find the idea described in this open access letter worth pursuing and would further develop and commercialize the ESwift concept. DA - 2019/11/04/ PY - 2019 DO - 10.20944/preprints201911.0037.v1 DP - www.preprints.org LA - en ST - ESwift UR - https://www.preprints.org/manuscript/201911.0037/v1 Y2 - 2019/11/14/08:11:09 ER -