Warning: include_once(/home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/prive/formulaires/selecteur/generique_fonctions.php): failed to open stream: No such file or directory in /home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/ecrire/inc/utils.php on line 1530

Warning: include_once(): Failed opening '/home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/prive/formulaires/selecteur/generique_fonctions.php' for inclusion (include_path='.:/opt/php7.1/lib/php') in /home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/ecrire/inc/utils.php on line 1530
TY - JOUR TI - Searching for bacteria in sticky situations: Methods for investigating bacterial survival at solid-air interfaces involving Wyoming MX-80 bentonite AU - Pashang, Rosha AU - Laursen, Andrew E. T2 - Applied Clay Science AB - Effective removal of prokaryotic cells from clay interfaces such as bentonite is essential for quantitative assessment of microbial communities, considering that strong bentonite clay-DNA and –RNA complexes challenge the use of molecular-based techniques. In this study, aerobic bacteria were isolated from Wyoming MX-80 bentonite and sequenced for identification (16S rRNA). A glass-bentonite substrate and sterile bentonite powder were inoculated with Arthrobacter sp. (isolated from bentonite) to test cell removal efficiency using sonication and vortexing. Manipulation of pH (pH 7 versus pH 9) did not affect cell removal efficiency, while changes in temperature within limits (15–37 °C) did affect cell removal efficiency. To evaluate microbial survival during desiccation, bacterial isolates were inoculated onto glass and bentonite-covered glass coverslip substrates, and particulate bentonite. Substrates were desiccated, and cells were removed by vortexing at different time points over 31 days. Abundance of viable cells followed a first-order rate of decrease. Vegetative desiccation-tolerant Arthrobacter sp. isolates from bentonite clay had lower loss of viable, culturable cells (0.07 d−1 to 0.89 d−1) than did a Bacillus sp. isolate (>1 d−1) or a Pseudomonas stutzeri isolate (0.79 to >1 d−1), suggesting Arthrobacter sp. may be more tolerant of these prolonged periods of desiccation on the bentonite-air interface. Tolerance to matric stress by microorganisms varies depending on the cellular adaptation of the target species, the physical and chemical properties of the given solid-air environment, as well as the employed population and community-based survival mechanisms. DA - 2020/04/01/ PY - 2020 DO - 10.1016/j.clay.2020.105487 DP - ScienceDirect VL - 188 SP - 105487 J2 - Applied Clay Science LA - en SN - 0169-1317 ST - Searching for bacteria in sticky situations UR - http://www.sciencedirect.com/science/article/pii/S0169131720300521 Y2 - 2020/02/19/16:51:21 KW - Adhesion KW - Cell removal KW - Clay interface KW - Desiccation tolerance KW - Nuclear waste storage KW - Nutrient starvation KW - Vegetative cell survival ER -