Warning: include_once(/home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/prive/formulaires/selecteur/generique_fonctions.php): failed to open stream: No such file or directory in /home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/ecrire/inc/utils.php on line 1530

Warning: include_once(): Failed opening '/home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/prive/formulaires/selecteur/generique_fonctions.php' for inclusion (include_path='.:/opt/php7.1/lib/php') in /home/clients/0b55f44bf8d530a3593f8dc13d053404/sites/corrovision/ecrire/inc/utils.php on line 1530
TY - JOUR TI - Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria AU - Siddik, Aboobucker AU - Satheesh, Sathianeson T2 - Scientific Reports AB - Extracellular polymeric substances (EPSs) are the hydrated gelatinous matrix produced by microorganisms for attachment in a biofilm environment. In this study, the compositional variation between EPSs of three marine biofilm bacteria (Pseudoalteromonas shioyasakiensis, Vibrio harveyi and Planomicrobium sp.) were analysed by GC-MS, 1H NMR, FT-IR and XRD and SEM. The ecological significance of exopolymers was assessed in vivo using marine model organism barnacle larvae for their settlement-inducing activity. Chemical analysis revealed the presence of glycan fucosylated oligosaccharides, tetraose, trisaccharides, iso-B-Pentasaccharides, sialyllactose, oligomannose, galacto-N-biose, difucosyl-para-lacto-N-neohexaose, 3′-sialyl N-acetyllactosamine and isoglobotriaose-β-N(Acetyl)-Propargyl in all extracted EPSs. Bioassay results indicated that treatment of the barnacle larvae with EPSs from three bacterial strains enhanced settlement on substrates. In conclusion, this study highlighted the role of water-soluble EPSs in the invertebrate larval settlement on artificial materials. DA - 2019/11/28/ PY - 2019 DO - 10.1038/s41598-019-54294-9 DP - www.nature.com VL - 9 IS - 1 SP - 1 EP - 15 J2 - Sci Rep LA - en SN - 2045-2322 UR - https://www.nature.com/articles/s41598-019-54294-9 Y2 - 2019/12/09/07:58:34 ER -